首页> 外文OA文献 >Adsorption of bitumen model compounds on kaolinite in liquid and supercritical carbon dioxide solvents: a study by periodic density functional theory and molecular theory of solvation
【2h】

Adsorption of bitumen model compounds on kaolinite in liquid and supercritical carbon dioxide solvents: a study by periodic density functional theory and molecular theory of solvation

机译:液体和超临界二氧化碳溶剂中高岭石上沥青模型化合物的吸附:基于周期性密度泛函理论和溶剂化分子理论的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The geometry of phenanthridine, benzothiophene, tetralin, and naphthalene representative of the heterocyclic, naphthenic, and aromatic components of bitumen adsorbed on kaolinite is optimized using density functional theory and periodic boundary conditions in gas phase. These bitumen model compounds preferentially adsorb on the aluminum hydroxide surface of kaolinite with energy decreasing in the order phenanthridine > naphthalene > tetralin \u223c benzothiophene. The adsorption of phenanthridine is strengthened by hydrogen bonding between the pyridinic N atom and an axial hydroxyl group of kaolinite, while the rest of the molecules adsorb through van der Waals interactions. The mechanism of solvation in CO\u2082 and the effect of liquid and supercritical CO\u2082 on the adsorption thermodynamics are studied using the three-dimensional reference interaction site model theory with the closure approximation of Kovalenko and Hirata (3D-RISM-KH) molecular theory of solvation at 293\u2013333 K and 10\u201330 MPa. The CO\u2082 solvent interacts with the aluminum hydroxide surface of kaolinite by hydrogen bonding, with the pyridinic N atom of phenanthridine by electrostatic interactions, and with the rest of the bitumen model compounds by hydrophobic interactions, as inferred from the 3D site density distribution functions of CO\u2082. The molecule\u2013kaolinite potentials of mean force in CO\u2082 show that the adsorption of naphthalene and tetralin on kaolinite is substantially weakened as the pressure is increased and the temperature is decreased. Benzothiophene adsorption is the least sensitive to CO\u2082 temperature and pressure changes. In liquid CO\u2082 at 30 MPa and 293 K, the hydrocarbon molecules are weakly adsorbed and can be desorbed by CO\u2082, while the heterocycles would remain adsorbed, suggesting an approach for extraction of deasphalted bitumen from oil sands. While the most favorable thermodynamic conditions for desorption are in liquid CO\u2082, the kinetic barrier for desorption is the most sensitive to small changes in the temperature and pressure in supercritical CO\u2082, indicating that supercritical conditions are important for desorption rate control. These results suggest that the investigated bitumen components can be selectively desorbed from kaolinite by controlling the temperature and pressure of the CO\u2082 solvent and agree with experimental reports on heavy oil recovery. These insights are valuable for the development of improved techniques for extraction of bitumen from oil sands and deasphalting of bitumen using liquid and supercritical CO\u2082.
机译:利用密度泛函理论和气相中的周期性边界条件,优化了菲啶,苯并噻吩,四氢萘和萘的几何形状,它们代表了沥青吸附在高岭石上的杂环,环烷烃和芳族成分。这些沥青模型化合物优先吸附在高岭土的氢氧化铝表面上,能量降低的顺序为菲啶>萘>四氢萘\苯并噻吩。吡啶N原子与高岭石的轴向羟基之间的氢键作用增强了菲啶的吸附,而其余分子则通过范德华相互作用进行吸附。使用三维参考相互作用位点模型理论,以科瓦连科和平田(3D-RISM-KH)分子的闭合近似,研究了CO \ u2082中的溶剂化机理以及液体和超临界CO \ u2082对吸附热力学的影响。 293 \ u2013333 K和10 \ u201330 MPa的溶剂化理论。从3D位点密度分布函数推论,CO \ u2082溶剂通过氢键与高岭石的氢氧化铝表面发生相互作用,与菲啶的吡啶吡啶N原子通过静电相互作用发生相互作用,而其余的沥青模型化合物则通过疏水相互作用发生相互作用,这是根据3D位置密度分布函数得出的的CO \ u2082。在CO 2208中的平均力分子的高岭土势表明,随着压力的升高和温度的降低,萘和四氢化萘在高岭石上的吸附作用显着减弱。苯并噻吩吸附对CO 2温度和压力变化最不敏感。在30 MPa和293 K的液态CO \ u2082中,碳氢化合物分子吸附较弱,并且可以被CO \ u2082解吸,而杂环仍保持吸附状态,这表明从油砂中提取脱沥青的方法是可行的。尽管最有利的解吸热力学条件是在液态CO 2中,但解吸的动力学障碍对超临界CO 2中温度和压力的微小变化最为敏感,这表明超临界条件对于解吸速率控制很重要。这些结果表明,通过控制CO 2 O 2 O 2溶剂的温度和压力,可以从高岭石中选择性地吸附所研究的沥青组分,并且与重油回收的实验报告相吻合。这些见解对于开发改进的技术具有宝贵的价值,该改进的技术用于从油砂中提取沥青并使用液体和超临界CO \ u2082对沥青进行脱沥青。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号